On skew polynomial codes and lattices from quotients of cyclic division algebras
نویسندگان
چکیده
We propose a variation of Construction A of lattices from linear codes defined using the quotient Λ/pΛ of some order Λ inside a cyclic division F -algebra, for p a prime ideal of a number field F . To obtain codes over this quotient, we first give an isomorphism between Λ/pΛ and a ring of skew polynomials. We then discuss definitions and basic properties of skew polynomial codes, which are needed for Construction A, but also explore further properties of the dual of such codes. We conclude by providing an application to space-time coding, which is the original motivation to consider cyclic division F -algebras as a starting point for this variation of Construction A.
منابع مشابه
2-D skew constacyclic codes over R[x, y; ρ, θ]
For a finite field $mathbb{F}_q$, the bivariate skew polynomial ring $mathbb{F}_q[x,y;rho,theta]$ has been used to study codes cite{XH}. In this paper, we give some characterizations of the ring $R[x,y;rho,theta]$, where $R$ is a commutative ring. We investigate 2-D skew $(lambda_1,lambda_2)$-constacyclic codes in the ring $R[x,y;rho,theta]/langle x^l-lambda_1,y^s-lambda_2rangle_{mathit{l}}.$ A...
متن کاملSome notes on the characterization of two dimensional skew cyclic codes
A natural generalization of two dimensional cyclic code ($T{TDC}$) is two dimensional skew cyclic code. It is well-known that there is a correspondence between two dimensional skew cyclic codes and left ideals of the quotient ring $R_n:=F[x,y;rho,theta]/_l$. In this paper we characterize the left ideals of the ring $R_n$ with two methods and find the generator matrix for two dimensional s...
متن کاملSome algorithms for skew polynomials over finite fields
In this paper, we study the arithmetics of skew polynomial rings over finite fields, mostly from an algorithmic point of view. We give various algorithms for fast multiplication, division and extended Euclidean division. We give a precise description of quotients of skew polynomial rings by a left principal ideal, using results relating skew polynomial rings to Azumaya algebras. We use this des...
متن کاملOn Skew Cyclic Codes over a Finite Ring
In this paper, we classify the skew cyclic codes over Fp + vF_p + v^2F_p, where p is a prime number and v^3 = v. Each skew cyclic code is a F_p+vF_p+v^2F_p-submodule of the (F_p+vF_p+v^2F_p)[x;alpha], where v^3 = v and alpha(v) = -v. Also, we give an explicit forms for the generator of these codes. Moreover, an algorithm of encoding and decoding for these codes is presented.
متن کاملSkew constacyclic codes over Galois rings
We generalize the construction of linear codes via skew polynomial rings by using Galois rings instead of finite fields as coefficients. The resulting non commutative rings are no longer left and right Euclidean. Codes that are principal ideals in quotient rings of skew polynomial rings by a two sided ideals are studied. As an application, skew constacyclic self-dual codes over GR(4) are constr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Adv. in Math. of Comm.
دوره 10 شماره
صفحات -
تاریخ انتشار 2016